View all

### Rules on typing in of functions and constants

Example:
If you want to enter this expression you need to enter the following expression:
(x^2-x^(1/3)+5)/(x-sin(pi*x))+log(2,x)+exp(2x)

Constants:
e - base of the natural logarithm of a number with an approximate value of 2.71828 ....
pi - the number having a value of 3.14159 ... and equal to the ratio of the circumference to its diameter
i - is the imaginary unit, sqrt (-1)
Degree - the number of radians in one degree, which has a numeric value pi/180
EulerGamma - Euler's constant, the numerical value 0.577216 ....
GoldenRatio - a constant with a value of (1 + sqrt (5)) / 2, which determines the division of a piece by the rule of the golden section

Elementary operations:
* - Multiplication (often a gap is also regarded as a multiplication sign)
+ - the summation
- - subtraction
/ - the division

Elementary functions:
abs(x) - the absolute value of x, |x|
sqrt(x) - the square root values of x, √x
x^y - x in the degree of y, xy
e^x = exp(x) - the values of the exponent x, ex
log(a,b) - the logarithm of b to the base a, Loga(b)
log(x) - the natural logarithm of the values of x, Loge(x)
dilog(x) - dilogarithm value of x, Li2(x)
n! - the factorial of n, equal to n ×(n-1) × ... × 3 × 2 × 1, and 0! = 1, and 1! = 1
n!! - a double factorial of n, equal to n ×(n-2) ×(n-4) × ...

Trigonometric functions:
sin(x) - a sine value of x
cos(x) - cosine of the value x
tan(x) - the tangent of the value x
cot(x) - cot values x
sec(x) - secant values of x, sec(x) = 1/cos(x)
csc(x) - cosecant values of x, csc(x) = 1/sin(x)

Inverse trigonometric function:
arcsin(x) - arcsine value of x, sin-1(x)
arccos(x) - arccosine values of x, cos-1(x)
arctan(x) - arctangent value of x, tan-1(x)
arccot(x) - arccotangent value of x, cot-1(x)
arcsec(x) - arksekans value of x, sec-1(x)
arccsc(x) - arkkosekans value of x, csc-1(x)

Hyperbolic:
sinh(x) - hyperbolic sine value of x
cosh(x) - hyperbolic cosine value x
tanh(x) - hyperbolic tangent value of x
coth(x) - kotangenc hyperbolic value of x
sech(x) - the hyperbolic secant value of x
csch(x) - the hyperbolic cosecant values x

Inverse hyperbolic functions:
arcsinh(x) - hyperbolic arc sine value of x, sinh-1(x)
arccosh(x) - hyperbolic cosine values of x, cosh-1(x)
arctanh(x) - hyperbolic arc tangent value of x, tanh-1(x)
arccoth(x) - arkkotangenc hyperbolic value of x, coth-1(x)
arcsech(x) - arksekans hyperbolic value of x, sech-1(x)
arccsch(x) - arkkosekans hyperbolic value of x, csch-1(x)

Functions of a complex argument:
abs(z) - the module of the complex number z
arg(z) - the argument of the complex number z
Im(z) - the imaginary part of the complex number z
Re(z) - the real part of the complex number z

Orthogonal polynomials:
ChebyshevT(n, x) - the Chebyshev polynomial of the n-th degree of the first kind, Tn(x)
ChebyshevU(n, x) - the Chebyshev polynomial of the n-th degree of the second kind, Un(x)
HermiteH(n, x) - Hermite polynomial of the n-th degree, Hn(x)
JacobiP(n, a, b, x) - Jacobi polynomial of the n-th degree, Pn(a, b)(x)
GegenbauerC(n, m, x) - Gegenbauer polynomial, Cn(m)(x)
LaguerreL(n, x) - Laguerre polynomial of the n-th degree, Ln(x)
LaguerreL(n, a, x) - the generalized Laguerre polynomial of degree n-th, Lna(x)
LegendreP(n, x) - the Legendre polynomial of the n-th degree, Pn(x)
LegendreP(n, m, x) - attached Legendre polynomial, Pnm(x)
LegendreQ(n, x) - Legendre function of the second kind of n-th order, Qn(x)
LegendreQ(n, m, x) - the associated Legendre function of the second kind, Qnm(x)

Exponential integral and related functions:
SinIntegral(x) - the sine integral, Si(x)
SinhIntegral(x) - hyperbolic sine integral, Shi(x)
CosIntegral(x) - integral cosine, Ci(x)
CoshIntegral(x) - hyperbolic cosine integral, Shi(x)
ExpIntegralEi(x) - exponential integral, Ei(x)
ExpIntegralE(n, x) - exponential integral, En(x)
FresnelC(x) - the Fresnel integral, C(x)
FresnelS(x) - the Fresnel integral, S(x)
li(x) - the integral logarithm
erf(x) - the error function (the probability integral)
erf (x0, x1) - generalized error function, erf(x1)-erf(x0)
erfc(x) - complementary error function, 1-erf(x)
erfi(x) - the perceived value of the error function, erfi(i × x) / i

Gamma and polygamma function:
Gamma(x) - the Euler gamma function, Γ(x)
Gamma(a, x) - the incomplete gamma function, Γ(a, x)
Gamma(a, x0, x1) - a generalized incomplete gamma function, Γ(a, x0)-Γ(a, x1)
GammaRegularized(a, x) - the regularized incomplete gamma function, Q(a, x) = Γ(a, x)/Γ(a)
GammaRegularized(a, x0, x1) - a generalized incomplete gamma function, Q(a, x0)-Q(a, x 1)
LogGamma(x) - the logarithm of the Euler gamma function, logΓ(x)
PolyGamma(x) - digamma function, ψ(x)
PolyGamma(n, x) - n-th derivative of the digamma function, ψ(n)(x)

Beta-function and its related function:
Beta(a, b) - the Euler beta function, B (a, b)
Beta(x, a, b) - incomplete beta function, Bx(a, b)
Beta(x0, x1, a, b) - the generalized incomplete beta function,
BetaRegularized (x, a, b) - regularized incomplete beta function Ix(a, b)
BetaRegularized (x0, x1, a, b) - the generalized regularized incomplete beta function,

Bessel functions:
BesselJ(n, x) - Bessel function of the first kind, Jn(x)
BesselI(n, x) - the modified Bessel function of the first kind, In(x)
BesselY(n, x) - Bessel function of the second kind, Yn(x)
BesselK(n, x) - the modified Bessel function of the second kind, Kn(x)

Hypergeometric function:
Hypergeometric0F1(a, x) - the hypergeometric function, 0F1(; a; x)
Hypergeometric0F1Regularized(a, x) - regularized hypergeometric function, 0F1( ; a; x) / Γ(a)
Hypergeometric1F1(a, b, x) - the confluent hypergeometric function of Kummer, 1F1(; a; b; x)
Hypergeometric1F1Regularized (a, b, x) - regularized confluent hypergeometric function, 1F1(; a; b; x) / Γ(b)
HypergeometricU(a, b, x) - confluent (confluent) hypergeometric function, U(a, b, x)
Hypergeometric2F1(a, b, c, x) - hypergeometric function 2F1(a, b; c; x)
Hypergeometric2F1Regularized(a, b, c, x) - regularized hypergeometric function 2F1(a, b; c; x) / Γ(c)

Elliptic integrals:
EllipticK(m) - complete elliptic integral of the first kind, K(m)
EllipticF(x, m) - elliptic integral of the first kind, F(x | m)
EllipticE(m) - complete elliptic integral of the second kind, E(m)
EllipticE(x, m) - elliptic integral of the second kind E(x | m)
EllipticPi(n, m) - complete elliptic integral of the third kind, Π(n | m)
EllipticPi(n, x, m) - elliptic integral of the third kind, Π(n; x | m)
JacobiZeta (x, m) - Jacobi zeta function, Z (x | m)

Elliptic function:
am(x, m) - the amplitude of the Jacobi elliptic functions, am(x | m)
JacobiSN(x, m) - Jacobi elliptic function, sn(x | m)
InverseJacobiSN(x, m) - the inverse Jacobi elliptic function, sn-1(x | m)